Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression.
نویسندگان
چکیده
Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.
منابع مشابه
Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells.
Mesangial cells are located within glomerular capillary loops and contribute to the physiological regulation of glomerular hemodynamics. The function of mesangial cells is controlled by a variety of ion channels in the plasma membrane, including nonselective cation channels, receptor-operated Ca2+ channels, and recently identified store-operated Ca2+ channels. Although the significance of these...
متن کاملProtein kinase C participates in activation of store- operated Ca channels in human glomerular mesangial cells
Ma, Rong, Patrick E. Kudlacek, and Steven C. Sansom. Protein kinase C participates in activation of storeoperated Ca2 channels in human glomerular mesangial cells. Am J Physiol Cell Physiol 283: C1390–C1398, 2002. First published July 24, 2002; 10.1152/ajpcell.00141.2002.— Protein kinase C (PKC) plays an important role in activating store-operated Ca2 channels (SOC) in human mesangial cells (MC...
متن کاملEpidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent pathway in human glomerular mesangial cells.
One of the fastest cellular responses following activation of epidermal growth factor receptor is an increase in intracellular Ca2+ concentration. This event is attributed to a transient Ca2+ release from internal stores and Ca2+ entry from extracellular compartment. Store-operated Ca2+ channels are defined the channels activated in response to store depletion. In the present study, we determin...
متن کاملProtein kinase Calpha participates in activation of store-operated Ca2+ channels in human glomerular mesangial cells.
Protein kinase C (PKC) plays an important role in activating store-operated Ca2+ channels (SOC) in human mesangial cells (MC). The present study was performed to determine the specific isoform(s) of conventional PKC involved in activating SOC in MC. Fura 2 fluorescence ratiometry showed that the thapsigargin-induced Ca2+ entry (equivalent to SOC) was significantly inhibited by 1 microM Gö-6976 ...
متن کاملTRPC4 forms store-operated Ca2+ channels in mouse mesangial cells.
Studies were performed to identify the molecular component responsible for store-operated Ca(2+) entry in murine mesangial cells (MMC). Because the canonical transient receptor potential (TRPC) family of proteins was previously shown to comprise Ca(2+)-selective and -nonselective cation channels in a variety of cells, we screened TRPC1-TRPC7 with the use of molecular methods and the fura 2 meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2015